
HP Fortify SCA
部署指南

1）你是在部署解决方案，
       而不是工具

2）成功的解决方案应以
       开发团队为中心

在部署HP Fortify Static Code Analyzer（SCA）时，企业可能会遇到一些问题，

导致他们延误部署或者无法部署该解决方案。HP Fortify Professional Services

提供了以下“最佳做法”指南来帮助企业成功地部署基于SCA的解决方案。

这是很多技术企业认为最具挑战性的障碍。我们都知道，
电锯是一种工具，它可以将树木锯成木材；但你不会直接
开始使用电锯或者让别人使用它，而是需要一些准备工作
和培训，考虑每次切割的目的，以及定期检查切割状况。
如果你不这样做，你可能会看到锯条卡在树中无法使用；
这会造成物件损坏或者让操作者严重受伤。总之，不会出
现你预期的结果。

基于SCA的解决方案可以实现一个或多个预期的目标；通
常情况下，即通过修复漏洞来降低业务风险。

SCA还可以用来改善代码质量、教育开发人员、降低成本，
或者实现合规性。但其主要目的是降低业务风险。

通常一个解决方案包括人、技术，以及人和技术实现目标
的过程。思考一下，谁负责修复SCA发现的漏洞。

· 没有修复代码的话，你将不会降低任何业务风险；
· 在代码修复之前，应该有人对代码进行分类，然后分
     别解决这些问题；
· 在对代码分类前，应该有人了解原始问题，以排除不
     相关的结果；
· 在了解原始问题之前，需要有人成功运行扫描，获取
     正确版本的源代码，这个人必须知道如何构建特定的
     应用；
· 最后，在开始扫描之前，需要有人决定或确定扫描哪
      个项目，更重要的是解决这一问题：“项目是什么？”

请注意你的人员将需要做的工作。SCA不会决定需要扫描
哪些项目，SCA也不会修复你的漏洞。这个解决方案需要
你的团队付出努力，在安装任何软件之前，应该提前规划
这个工作流程。

虽然企业很想建立这样的解决方案，即让安全团队可以在
隔离环境中获取和扫描应用，但这是部署解决方案的错误
方法。

原因包括：

· 安全人员通常无法构建软件应用，这通常需要开发项
     目的构建工程师所具备的的专业知识；
· 安全人员通常没有足够的技能，或者被授权来检查源
     代码中的变更，因此他们无法修复发现的漏洞；
· 不管安全人员是否能够理解在应用中发现的问题，他
     们通常都需要开发团队的成员来与他们一起审查漏洞。

正确的解决方案是对开发团队进行培训，让他们进行扫描。

3）从试点开发团队开始

从小处着手。以开发团队为中心建立解决方案；并让试点
开发团队为该解决方案中的流程编写规范（例如“程序启
动假设”；“主要工作流程步骤”；“备选措施”；“程
序完成输出”）。

认真选择你的试点团队，这个团队应该是这样的：

· 小型。5个或5个以下开发人员的团队最容易开展工作；
· 备受尊敬。他们应该是同行团队中的佼佼者；
· 这个团队致力于的产品应该是企业取得成功至关重要
      的软件；
· 理想情况下，他们应该使用SCA支持的编程语言。例如，
      SCA支持Java、微软C#.NET和C/C++，并已经支持这
      些主流语言长达8年或更长时间。



4）正确确定推动该解决方案
       所需要做的工作

按上述要求可以选出试点团队，最终其成功将在社交网络
上传播开来，这可以让其他团队复制这种成功模式（必要
的话，需要作出改进）。

在每100到200名开发人员中，你大约需要一名全职专业
人员来推动这个解决方案。这个人将帮助进行权限提升、
管理定期系统维护和审计，以及监控定义的角色是否正确
遵循流程。如果你不打算安排这样的职位，部署将无法成
功。所以你应该预算好这笔费用，并指派具有必要技能的
人员。如果你的企业没有这样的人，联系HP Fortify了解
“常驻顾问”的费用。

5）在可能的情况下利用现有的技术

SCA给开发人员带来了新的任务。从试验来看，这似乎会
增加他们的工作量；但鉴于漏洞生态系统的其他部分，在
项目推出之前发现问题应该会逐渐减少工作量和企业压力。

企业引入新技术或工艺带来的问题是，这会迫使开发人员
替换他们已经熟悉的系统。但企业最好不这么做。例如，
如果你可以整合SCA与JIRA，但开发人员正在使用
FogBugz，你不应该要求开发人员使用JIRA，而应该弄清
楚如何整合漏洞追踪与FogBugz才对。

6）转换应侧重于零构建警告

在两种情况下我会听到这样的问题，“请你告诉我，如果
你给机器输入了错误的数字，那么，是否还能得到正确的
答案？”我无法正确领会这类想法。
                              ——援引自Charles Babbage的《一个哲学家生涯的片段》

 

“无用输入无用输出”是数据系统建设者和设计者熟悉的
一句话。这句话也适用于SCA转换——这是分析的第一步。

对于任何SCA构建模型，你可以使用“sourceanalyzer -b 
model_name -show-build-warnings”来查看这种转换
是否检测出任何问题。此外，你可以使用以下命令来获取
已转换文件的列表：
“sourceanalyzer -b model_name -show-files”

如果输出不如你的预期，你可以继续操作直到发现和纠正
问题。

不要扫描不完整或存在错误的构建模型，这种扫描结果会
浪费你的时间。

7）使用命令行来执行无错误扫描

不要使用“扫描向导”或任何图形应用来进行SCA扫描。
你可能无法明白底层转换中使用了哪些参数以及为什么。
其结果是，当出问题的时候，你不清楚如何解决这个问题。

这个规则的例外是微软Visual Studio .NET集成开发环境；
在这种环境中，对于大多数SCA版本，图形版本的转换要
比命令行更强大。当你在图形模式运行这种转换和扫描时，
你会发现所使用的命令行参数，在隐藏的子目录Local 
Settings\Application Data\Fortify\VS*中的用户配置文件
目录中。

8）建立安全检查点，只要可行即可

在试点团队展示了解决方案的运行后，应建立产品发布的
检查点，这要求进行扫描并解决与安全政策相关的一些问
题。这个政策应该记录在你的解决方案中。它应该包含类
似这样的要求“修复所有在2015年1月1日后发现的问
题”，并应该包含详细信息，例如谁应该负责扫描、哪些
应用需要被扫描等。这个检查点应该只可用于开发团队，
因为是他们将这种概念引入到过程中的。

9）先修复最严重的问题

这可能听起来很明显，当开发人员第一次审查SCA结果时，
他们通常会倾向于先解决他/她了解的问题，而不是最严
重的问题。企业可通过Fortify用户界面过滤器来获取指导
和培训。

10）不要好高骛远

我们不可能解决所有问题，事实上，永远不可能。



请记住，你的开发人员都是聪明的工程师，如果他们在第
一个问题（一个误报）花了7分钟，并且他们还有1万个问
题需要解决，他们可能会认为他们将需要7万分钟，这意
味着他们需要超过29个工作周的工作时间。你可能很快会
发现他们开始“生病”或者整天在LinkedIn寻找新工作。

如果在初次扫描中发现很多问题，考虑使用过滤来显示最
糟糕的真正的问题。另一种有用的方法是设置底线，例如
指定在期限日期后“没有新问题”。这个期限日期之前的
其他问题可以成为修复团队的单独的项目。

为了完成上述工作，你可能需要专门的技术人员来处理
SCA结果、创建过滤器，并将其正确部署到服务器以及流
程定义的相关步骤。如果你需要的话，你可以联系HP 
Fortify Professional Services获取有偿帮助。

11）避免“可利用性”陷阱

下面这个阴影部分节选自Brian Chess和Jacob West的《通过静态分析实

现安全编程》（Addisson-Wesley出版社，2007年，版权所有）。

避免可利用性争辩

安全审查不应该是关于制造漏洞利用，但在很多时候，审
查团队不得不开发漏洞利用。为了明白其中的原因，我们
需要考虑在安全审查时一段代码可能获得的三种可能的裁
定：

·明显可利用代码
·模糊代码
·明显安全代码

这三者之间没有明显的分界线；它们属于一个范畴。只是
两端要比中间的更好处理；明显可利用的代码需要修复，
明显安全的代码可以置之不管。而中间的模糊代码最难处
理。代码之所以模糊是因为其逻辑难以理解，因为我们难
以确定在何种情况下代码会被调用，或者很难看到攻击者
可能如何利用这个代码。

审查者对待模糊代码的方式可能会给企业带来风险。如果
审查者在代码修复前需要证明代码的可利用性，审查者可
能最后会犯错并忽略可利用的漏洞。当程序员说，“除非
你能证明它是可利用的，否则我不会修复”，这里就是可
利用性陷阱。（想了解程序员拒绝修复安全漏洞的更多理
由，请参见侧面的“程序员拒绝修复糟糕代码的5个站不
住脚的借口”）。

这个可利用性漏洞很危险，主要有两个原因：首先，开发
漏洞利用很耗费时间。你开发漏洞利用的时间往往会超过
寻找更多漏洞的时间。其次，开发漏洞利用是一项技能。

如果你不知道开发漏洞利用呢？这是否意味着它无法被利
用，还是说其实你根本不知道如何正确利用它？

不要落入可利用性陷阱：你应该修复漏洞！

如果一段代码不是明显安全的，你应该确保它成为明显安
全的代码。这种时候可能需要冗余安全检查；或者这需要
注释来提供可验证的方法以确定该代码的安全性。还有的
时候，它会插入一个可利用的漏洞。当没有发现任何错误
时，程序员并不会想要更改代码，因为任何变更都可能引
入新的漏洞。但是推出包含漏洞的产品也不是好事。

被忽视的漏洞可能最终导致新的漏洞利用，而更糟糕的是，
漏洞可能不需要具有可利用性就能对企业的声誉造成影响。
例如，安全研究人员在发现新的缓冲区溢出后，可以通过
发布这个信息来获取名利和荣耀，即使攻击者不可能围绕
该漏洞构建攻击。这就是说，尽管所有迹象都表明这是无
法被利用的漏洞，软件公司有时候也会发布安全补丁。

程序员拒绝修复糟糕代码的5个站不住脚的借口

对于安全检查中未被修复的漏洞，那些不了解软件安全的
程序员会给出各种各样的理由。我们最常听到的理由是“
我不认为这是可被利用的”。所有代码审查者都有自己的
借口，下面是他们忽视安全问题最常用的似是而非的借口：

1.“我相信系统管理员。”
尽管我知道他们以前错误配置过软件，但我知道他们这次不
会出错，所以我并不需要验证我的程序是否得到合理配置。

2.“你必须进行身份验证，然后才能访问该网页。”
攻击者怎么可能会获得用户名和密码？如果你有用户名和
密码，根据定义，你就是好人，也就是说，你就不会攻击
系统。

3.“没有人会想到这样做！”
用户手册非常清楚地指出，用户名不能超过26个字符，并
且GUI可以防止你输入超过26个字符。那么，在我读取已
保存的文件时，我为什么需要执行边界检查？

4. “那个函数调用不可能出问题。”
我已经在我的Windows桌面运行了100万次，当它在128
处理器的Sun服务器运行时，怎么可能会出问题？

5. “我们没想过将这个代码用于生产环境。”
是的，我们知道这是已经连续数年出货的产品的一部分，
但在编写这个代码时，我们没想过它会用于生产环境，所
以你在审查代码时应该考虑到这一点。

了解更多信息请访问：
hp.com/go/fortifyservices

http://www8.hp.com/us/en/software-solutions/enterprise-security-consulting-services/index.html?jumpid=va_cfi5mx37ys

	HP Fortify SCA Best Practices 1
	HP Fortify SCA Best Practices 2
	HP Fortify SCA Best Practices 3

